// Visit www.neon.rip for more!
#include <vector>
#include <algorithm>
using std::vector;
using std::max;
// Given a list of N items, and a backpack with a
// limited capacity, return the maximum total profit that
// can be contained in the backpack. The i-th item's profit
// is profit[i] and it's weight is weight[i]. Assume you can
// have an unlimited number of each item available.
// Brute force Solution
// Time: O(2^m), Space: O(m)
// Where m is the capacity.
int dfsHelper(int i, vector<int>& profit, vector<int>& weight, int capacity) {
if (i == profit.size()) {
return 0;
}
// Skip item i
int maxProfit = dfsHelper(i + 1, profit, weight, capacity);
// Include item i
int newCap = capacity - weight[i];
if (newCap >= 0) {
int p = profit[i] + dfsHelper(i, profit, weight, newCap);
// Compute the max
maxProfit = max(maxProfit, p);
}
return maxProfit;
}
int dfs(vector<int>& profit, vector<int>& weight, int capacity) {
return dfsHelper(0, profit, weight, capacity);
}
// Memoization Solution
// Time: O(n * m), Space: O(n * m)
// Where n is the number of items & m is the capacity.
int memoHelper(int i, vector<int>& profit, vector<int>& weight,
int capacity, vector<vector<int>>& cache) {
if (i == profit.size()) {
return 0;
}
if (cache[i][capacity] != -1) {
return cache[i][capacity];
}
// Skip item i
cache[i][capacity] = memoHelper(i + 1, profit, weight, capacity, cache);
// Include item i
int newCap = capacity - weight[i];
if (newCap >= 0) {
int p = profit[i] + memoHelper(i, profit, weight, newCap, cache);
// Compute the max
cache[i][capacity] = max(cache[i][capacity], p);
}
return cache[i][capacity];
}
int memoization(vector<int>& profit, vector<int>& weight, int capacity) {
// A 2d array, with N rows and M + 1 columns, init with -1's
int N = profit.size(), M = capacity;
vector<vector<int>> cache(N, vector<int>(M + 1, -1));
return memoHelper(0, profit, weight, capacity, cache);
}
// Dynamic Programming Solution
// Time: O(n * m), Space: O(n * m)
// Where n is the number of items & m is the capacity.
int dp(vector<int>& profit, vector<int>& weight, int capacity) {
int N = profit.size(), M = capacity;
vector<vector<int>> dp(N, vector<int>(M + 1, 0));
// Fill the first column and row to reduce edge cases
for (int i = 0; i < N; i++) {
dp[i][0] = 0;
}
for (int c = 0; c <= M; c++) {
if (weight[0] <= c) {
dp[0][c] = (c / weight[0]) * profit[0];
}
}
for (int i = 1; i < N; i++) {
for (int c = 1; c <= M; c++) {
int skip = dp[i-1][c];
int include = 0;
if (c - weight[i] >= 0) {
include = profit[i] + dp[i][c - weight[i]];
}
dp[i][c] = max(include, skip);
}
}
return dp[N-1][M];
}
// Memory optimized Dynamic Programming Solution
// Time: O(n * m), Space: O(m)
int optimizedDp(vector<int>& profit, vector<int>& weight, int capacity) {
int N = profit.size(), M = capacity;
vector<int> dp(M + 1, 0);
for (int i = 1; i < N; i++) {
vector<int> curRow(M + 1, 0);
for (int c = 1; c <= M; c++) {
int skip = dp[c];
int include = 0;
if (c - weight[i] >= 0) {
include = profit[i] + curRow[c - weight[i]];
}
curRow[c] = max(include, skip);
}
dp = curRow;
}
return dp[M];
}